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Exercise 2.3.8

Consider
∂u

∂t
= k

∂2u

∂x2
− αu.

This corresponds to a one-dimensional rod either with heat loss through the lateral sides with
outside temperature 0° (α > 0, see Exercise 1.2.4) or with insulated lateral sides with a heat sink
proportional to the temperature. Suppose that the boundary conditions are

u(0, t) = 0 and u(L, t) = 0.

(a) What are the possible equilibrium temperature distributions if α > 0?

(b) Solve the time-dependent problem [u(x, 0) = f(x)] if α > 0. Analyze the temperature for
large time (t→∞) and compare to part (a).

Solution

Part (a)

The equilibrium temperature distributions have no time dependence: uE = uE(x). As a result,
they satisfy

0 = k
d2uE
dx2

− αuE .

Divide both sides by k.
d2uE
dx2

− α

k
uE = 0

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

uE(x) = C1 cosh

√
α

k
x+ C2 sinh

√
α

k
x

Since the boundary conditions for u apply for all time, uE satisfies the same conditions,
uE(0) = 0 and uE(L) = 0. Apply them both to determine C1 and C2.

uE(0) = C1 = 0

uE(L) = C1 cosh

√
α

k
L+ C2 sinh

√
α

k
L = 0

The second equation reduces to C2 sinh
√

α
kL = 0. The only way this equation is satisfied is if

C2 = 0, which means the only equilibrium temperature distribution is

uE(x) = 0.
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Part (b)

The PDE and its associated boundary conditions are linear and homogeneous, so the method of
separation of variables can be applied. Assume a product solution of the form u(x, t) = X(x)T (t)
and substitute it into the PDE

∂u

∂t
= k

∂2u

∂x2
− αu → ∂

∂t
[X(x)T (t)] = k

∂2

∂x2
[X(x)T (t)]− α[X(x)T (t)]

and the boundary conditions.

u(0, t) = 0 → X(0)T (t) = 0 → X(0) = 0

u(L, t) = 0 → X(L)T (t) = 0 → X(L) = 0

Separate variables in the PDE now.

X
dT

dt
= kT

d2X

dx2
− αX(x)T (t)

Divide both sides by kX(x)T (t).

1

kT

dT

dt︸ ︷︷ ︸
function of t

=
1

X

d2X

dx2
− α

k︸ ︷︷ ︸
function of x

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

1

kT

dT

dt
=

1

X

d2X

dx2
− α

k
= λ

As a result of using the method of separation of variables, the PDE has reduced to two
ODEs—one in x and one in t.

1

kT

dT

dt
= λ

1

X

d2X

dx2
− α

k
= λ


Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the
solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: λ = µ2.
The ODE for X becomes

d2X

dx2
=
(α
k
+ µ2

)
X.

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

X(x) = C3 cosh

√
α

k
+ µ2x+ C4 sinh

√
α

k
+ µ2x

Apply the boundary conditions now to determine C3 and C4.

X(0) = C3 = 0

X(L) = C3 cosh

√
α

k
+ µ2L+ C4 sinh

√
α

k
+ µ2L = 0
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The second equation reduces to C4 sinh
√

α
k + µ2L = 0. Since hyperbolic sine is not oscillatory,

the only way this equation is satisfied is if C4 = 0. The trivial solution X(x) = 0 results, which
means there are no positive eigenvalues. Suppose secondly that λ is zero: λ = 0. The ODE for X
becomes

d2X

dx2
=
α

k
X,

which is the same as the one for uE(x). Since the boundary conditions are the same, the trivial
solution X(x) = 0 is obtained, so zero is not an eigenvalue. Suppose thirdly that λ is negative:
λ = −γ2. The ODE for X becomes

d2X

dx2
=
(α
k
− γ2

)
X.

It was found earlier that the solution with hyperbolic sine and hyperbolic cosine led to the trivial
solution. The same will happen here unless the quantity in parentheses is negative.

d2X

dx2
= −

(
γ2 − α

k

)
X

The general solution is written in terms of sine and cosine.

X(x) = C5 cos

√
γ2 − α

k
x+ C6 sin

√
γ2 − α

k
x

Apply the boundary conditions to determine C5 and C6.

X(0) = C5 = 0

X(L) = C5 cos

√
γ2 − α

k
L+ C6 sin

√
γ2 − α

k
L = 0

The second equation reduces to C6 sin
√
γ2 − α

kL = 0. To avoid getting the trivial solution, we
insist that C6 6= 0. Then

sin

√
γ2 − α

k
L = 0√

γ2 − α

k
L = nπ, n = 1, 2, . . .√

γ2 − α

k
=
nπ

L

γ2 − α

k
=
n2π2

L2

γ2 =
α

k
+
n2π2

L2
.

The negative eigenvalues are λ = −α/k − n2π2/L2, and the eigenfunctions associated with them
are

X(x) = C5 cos

√
γ2 − α

k
x+ C6 sin

√
γ2 − α

k
x

= C6 sin

√
γ2 − α

k
x → Xn(x) = sin

nπx

L
.
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n only takes on the values it does because negative integers result in redundant values for λ. Now
solve the ODE for T with this formula for λ.

dT

dt
= k

(
−α
k
− n2π2

L2

)
T

= −k
(
α

k
+
n2π2

L2

)
T

The general solution is written in terms of the exponential function.

T (t) = C7 exp

[
−k
(
α

k
+
n2π2

L2

)
t

]
→ Tn(t) = exp

[
−k
(
α

k
+
n2π2

L2

)
t

]
According to the principle of superposition, the general solution to the PDE for u is a linear
combination of Xn(x)Tn(t) over all the eigenvalues.

u(x, t) =
∞∑
n=1

Bn exp

[
−k
(
α

k
+
n2π2

L2

)
t

]
sin

nπx

L

Apply the initial condition u(x, 0) = f(x) to determine An.

u(x, 0) =
∞∑
n=1

Bn sin
nπx

L
= f(x)

Multiply both sides by sin(mπx/L), where m is a positive integer.

∞∑
n=1

Bn sin
nπx

L
sin

mπx

L
= f(x) sin

mπx

L

Integrate both sides with respect to x from 0 to L.

ˆ L

0

∞∑
n=1

Bn sin
nπx

L
sin

mπx

L
dx =

ˆ L

0
f(x) sin

mπx

L
dx

Bring the constants in front.

∞∑
n=1

Bn

ˆ L

0
sin

nπx

L
sin

mπx

L
dx =

ˆ L

0
f(x) sin

mπx

L
dx

Because the sine functions are orthogonal, the integral on the left is zero if n 6= m. As a result,
every term in the infinite series vanishes except for the one where n = m.

Bn

ˆ L

0
sin2

nπx

L
dx =

ˆ L

0
f(x) sin

nπx

L
dx

Evaluate the integral on the left.

Bn

(
L

2

)
=

ˆ L

0
f(x) sin

nπx

L
dx
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So then

Bn =
2

L

ˆ L

0
f(x) sin

nπx

L
dx.

Take the limit of u(x, t) as t→∞ to find the equilibrium temperature distribution.

lim
t→∞

u(x, t) = lim
t→∞

∞∑
n=1

Bn exp

[
−k
(
α

k
+
n2π2

L2

)
t

]
sin

nπx

L

= 0

This result agrees with the one from part (a).
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