Exercise 2.3.8

Consider

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}-\alpha u .
$$

This corresponds to a one-dimensional rod either with heat loss through the lateral sides with outside temperature $0^{\circ}(\alpha>0$, see Exercise 1.2.4) or with insulated lateral sides with a heat sink proportional to the temperature. Suppose that the boundary conditions are

$$
u(0, t)=0 \quad \text { and } \quad u(L, t)=0 .
$$

(a) What are the possible equilibrium temperature distributions if $\alpha>0$?
(b) Solve the time-dependent problem $[u(x, 0)=f(x)]$ if $\alpha>0$. Analyze the temperature for large time $(t \rightarrow \infty)$ and compare to part (a).

Solution

Part (a)

The equilibrium temperature distributions have no time dependence: $u_{E}=u_{E}(x)$. As a result, they satisfy

$$
0=k \frac{d^{2} u_{E}}{d x^{2}}-\alpha u_{E}
$$

Divide both sides by k.

$$
\frac{d^{2} u_{E}}{d x^{2}}-\frac{\alpha}{k} u_{E}=0
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
u_{E}(x)=C_{1} \cosh \sqrt{\frac{\alpha}{k}} x+C_{2} \sinh \sqrt{\frac{\alpha}{k}} x
$$

Since the boundary conditions for u apply for all time, u_{E} satisfies the same conditions, $u_{E}(0)=0$ and $u_{E}(L)=0$. Apply them both to determine C_{1} and C_{2}.

$$
\begin{aligned}
& u_{E}(0)=C_{1}=0 \\
& u_{E}(L)=C_{1} \cosh \sqrt{\frac{\alpha}{k}} L+C_{2} \sinh \sqrt{\frac{\alpha}{k}} L=0
\end{aligned}
$$

The second equation reduces to $C_{2} \sinh \sqrt{\frac{\alpha}{k}} L=0$. The only way this equation is satisfied is if $C_{2}=0$, which means the only equilibrium temperature distribution is

$$
u_{E}(x)=0 .
$$

Part (b)

The PDE and its associated boundary conditions are linear and homogeneous, so the method of separation of variables can be applied. Assume a product solution of the form $u(x, t)=X(x) T(t)$ and substitute it into the PDE

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}-\alpha u \quad \rightarrow \quad \frac{\partial}{\partial t}[X(x) T(t)]=k \frac{\partial^{2}}{\partial x^{2}}[X(x) T(t)]-\alpha[X(x) T(t)]
$$

and the boundary conditions.

$$
\begin{array}{rllll}
u(0, t)=0 & \rightarrow & X(0) T(t)=0 & & \rightarrow \\
u(L, t)=0 & \rightarrow & X(L) T(t)=0 & & \rightarrow
\end{array}
$$

Separate variables in the PDE now.

$$
X \frac{d T}{d t}=k T \frac{d^{2} X}{d x^{2}}-\alpha X(x) T(t)
$$

Divide both sides by $k X(x) T(t)$.

$$
\underbrace{\frac{1}{k T} \frac{d T}{d t}}_{\text {function of } t}=\underbrace{\frac{1}{X} \frac{d^{2} X}{d x^{2}}-\frac{\alpha}{k}}_{\text {function of } x}
$$

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

$$
\frac{1}{k T} \frac{d T}{d t}=\frac{1}{X} \frac{d^{2} X}{d x^{2}}-\frac{\alpha}{k}=\lambda
$$

As a result of using the method of separation of variables, the PDE has reduced to two ODEs - one in x and one in t.

$$
\left.\begin{array}{r}
\frac{1}{k T} \frac{d T}{d t}=\lambda \\
\frac{d^{2} X}{d x^{2}}-\frac{\alpha}{k}=\lambda
\end{array}\right\}
$$

Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: $\lambda=\mu^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\left(\frac{\alpha}{k}+\mu^{2}\right) X
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
X(x)=C_{3} \cosh \sqrt{\frac{\alpha}{k}+\mu^{2}} x+C_{4} \sinh \sqrt{\frac{\alpha}{k}+\mu^{2} x}
$$

Apply the boundary conditions now to determine C_{3} and C_{4}.

$$
\begin{aligned}
& X(0)=C_{3}=0 \\
& X(L)=C_{3} \cosh \sqrt{\frac{\alpha}{k}+\mu^{2}} L+C_{4} \sinh \sqrt{\frac{\alpha}{k}+\mu^{2}} L=0
\end{aligned}
$$

The second equation reduces to $C_{4} \sinh \sqrt{\frac{\alpha}{k}+\mu^{2}} L=0$. Since hyperbolic sine is not oscillatory, the only way this equation is satisfied is if $C_{4}=0$. The trivial solution $X(x)=0$ results, which means there are no positive eigenvalues. Suppose secondly that λ is zero: $\lambda=0$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\frac{\alpha}{k} X,
$$

which is the same as the one for $u_{E}(x)$. Since the boundary conditions are the same, the trivial solution $X(x)=0$ is obtained, so zero is not an eigenvalue. Suppose thirdly that λ is negative: $\lambda=-\gamma^{2}$. The ODE for X becomes

$$
\frac{d^{2} X}{d x^{2}}=\left(\frac{\alpha}{k}-\gamma^{2}\right) X .
$$

It was found earlier that the solution with hyperbolic sine and hyperbolic cosine led to the trivial solution. The same will happen here unless the quantity in parentheses is negative.

$$
\frac{d^{2} X}{d x^{2}}=-\left(\gamma^{2}-\frac{\alpha}{k}\right) X
$$

The general solution is written in terms of sine and cosine.

$$
X(x)=C_{5} \cos \sqrt{\gamma^{2}-\frac{\alpha}{k}} x+C_{6} \sin \sqrt{\gamma^{2}-\frac{\alpha}{k}} x
$$

Apply the boundary conditions to determine C_{5} and C_{6}.

$$
\begin{aligned}
& X(0)=C_{5}=0 \\
& X(L)=C_{5} \cos \sqrt{\gamma^{2}-\frac{\alpha}{k}} L+C_{6} \sin \sqrt{\gamma^{2}-\frac{\alpha}{k}} L=0
\end{aligned}
$$

The second equation reduces to $C_{6} \sin \sqrt{\gamma^{2}-\frac{\alpha}{k}} L=0$. To avoid getting the trivial solution, we insist that $C_{6} \neq 0$. Then

$$
\begin{aligned}
\sin \sqrt{\gamma^{2}-\frac{\alpha}{k}} L & =0 \\
\sqrt{\gamma^{2}-\frac{\alpha}{k}} L & =n \pi, \quad n=1,2, \ldots \\
\sqrt{\gamma^{2}-\frac{\alpha}{k}} & =\frac{n \pi}{L} \\
\gamma^{2}-\frac{\alpha}{k} & =\frac{n^{2} \pi^{2}}{L^{2}} \\
\gamma^{2} & =\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}} .
\end{aligned}
$$

The negative eigenvalues are $\lambda=-\alpha / k-n^{2} \pi^{2} / L^{2}$, and the eigenfunctions associated with them are

$$
\begin{aligned}
X(x) & =C_{5} \cos \sqrt{\gamma^{2}-\frac{\alpha}{k}} x+C_{6} \sin \sqrt{\gamma^{2}-\frac{\alpha}{k}} x \\
& =C_{6} \sin \sqrt{\gamma^{2}-\frac{\alpha}{k}} x \quad \rightarrow \quad X_{n}(x)=\sin \frac{n \pi x}{L}
\end{aligned}
$$

n only takes on the values it does because negative integers result in redundant values for λ. Now solve the ODE for T with this formula for λ.

$$
\begin{aligned}
\frac{d T}{d t} & =k\left(-\frac{\alpha}{k}-\frac{n^{2} \pi^{2}}{L^{2}}\right) T \\
& =-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) T
\end{aligned}
$$

The general solution is written in terms of the exponential function.

$$
T(t)=C_{7} \exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \quad \rightarrow \quad T_{n}(t)=\exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right]
$$

According to the principle of superposition, the general solution to the PDE for u is a linear combination of $X_{n}(x) T_{n}(t)$ over all the eigenvalues.

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \sin \frac{n \pi x}{L}
$$

Apply the initial condition $u(x, 0)=f(x)$ to determine A_{n}.

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}=f(x)
$$

Multiply both sides by $\sin (m \pi x / L)$, where m is a positive integer.

$$
\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L}=f(x) \sin \frac{m \pi x}{L}
$$

Integrate both sides with respect to x from 0 to L.

$$
\int_{0}^{L} \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x
$$

Bring the constants in front.

$$
\sum_{n=1}^{\infty} B_{n} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x
$$

Because the sine functions are orthogonal, the integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the one where $n=m$.

$$
B_{n} \int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x=\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Evaluate the integral on the left.

$$
B_{n}\left(\frac{L}{2}\right)=\int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

So then

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Take the limit of $u(x, t)$ as $t \rightarrow \infty$ to find the equilibrium temperature distribution.

$$
\begin{aligned}
\lim _{t \rightarrow \infty} u(x, t) & =\lim _{t \rightarrow \infty} \sum_{n=1}^{\infty} B_{n} \exp \left[-k\left(\frac{\alpha}{k}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t\right] \sin \frac{n \pi x}{L} \\
& =0
\end{aligned}
$$

This result agrees with the one from part (a).

